Combinatorial Properties for Families of H-convex Sets
نویسنده
چکیده
Intersection results for families of H-convex sets in H-spaces are given. These extend known results concerning families of convex sets in topological vector spaces, such as the Berge-Klee intersection theorem and a previous result of the author. MSC 2000. 52A01, 14E20.
منابع مشابه
A convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملOn Some Combinatorial Problems concerning Geometrical Realizations of Finite and Infinite Families of Sets
A version of the precise definition of Euler–Venn diagram for a given family of subsets of a universal set is presented. Certain geometrical properties of such diagrams are discussed and close connections with purely combinatorial problems and with the theory of convex sets are indicated. In particular, some geometrical realizations of uncountable independent families of sets are considered. 20...
متن کاملInterval sequences and the combinatorial encoding of planar families of pairwise disjoint convex sets
We extend a combinatorial encoding of families of pairwise disjoint convex sets in the plane recently introduced by J. E. Goodman and R. Pollack to the case of families not in general position. This encoding generalizes allowable sequences, which encode finite planar point sets. Further we prove several results on realizability questions, and discuss a number of different combinatorial properti...
متن کاملConvexity and Geodesic Metric Spaces
In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کامل